

Free flow electrophoresis allows quick preparation of extracellular vesicles from cell culture supernatants and human plasma Simon Staubach¹, Tobias Tertel¹, Verena Börger¹, Christian Grätz³, Michael Pfaffl³, Oliver Drews⁴, Gerhard Weber², Bernd Giebel¹ ¹ Institute for Transfusion Medicine, University Hospital Essen, Germany ²FFE Service GmbH, Feldkirchen, Germany (<u>www.ffeservice.com</u>) ³Institute of Animal Physiology and Immunology, Technical University of Munich (TUM), Germany

Abstract

Despite increasing interests in extracellular vesicles (EVs), it remains a long procedure to prepare EVs to high purity. Neither fractionation by density nor by size alone is sufficient to separate EVs from most contaminants including lipoproteins. For now, a time-consuming combination of two methods (density and size separation) is required to enrich EVs to high purity at the expense of time. During the recent years, we qualified Free Flow Electrophoresis (FFE) as an efficient method for EV separation. FFE is a well-established (semi-) preparative method to separate analytes with inherent difference in charge density and/or their pl-values into up to 96 different fractions. Upon applying imaging flow cytometry analyses to identify EV containing fractions, we have optimized FFE protocols for the preparation of bona fide EVs from conditioned cell culture media and demonstrated the reproducibility of the method.

Applying a comparable strategy, we now have improved FFE protocols for the preparation of EVs from human plasma samples. Notably, EVs from plasma show a much higher EV complexity than of cell culture supernatants. Specifically, plasma EVs are recovered in more than three FFE fractions. Several of these fractions also contain relatively high protein contents which could effectively be reduced by subsequent ultra-filtration (UF). The whole procedure takes approximately 40 min per plasma sample and compared to other technologies can be considered as relative quick. Currently, we are characterizing the EVs obtained from different pooled FFE and ultra-filtrated fractions by RNA and proteome analyses.

Principal of FFE Separation

The central unit of the FFE is a separation chamber, which basically consists of a separation plate and a 0.2 mm spaced front plate with a longitudinally arranged anode and cathode. After assembly buffers with defined pH values are loaded into the vertically arranged media inlets at the bottom edge of the separation chamber. The buffers are continuously transported by a laminar flow along the longitudinal axis of the separation chamber, forming concrete longitudinal buffer lanes. Likewise, the sample to be separated is applied at a specific vertical position at the bottom of the horizontal lane and transported by the laminar flow together with the respective buffer. Typically, buffer application schemes are designed so that the buffer with the lowest pH is closest to the anode and that pH values of the buffers gradually increase towards the cathode. Driven by a vertical electric field and depending on their electric charge, sample components migrate vertically through different buffer zones. The migration speed and distance of each sample component depends on its charge density and/or its isoelectric point (pl). Components, with higher negative charge densities or lower pls migrate quicker to the anode than those with lower charge densities and higher pls. Still transported by the horizontal laminar flow, the vertically separated sample components continuously approach the top of the separation chamber, where they are collected into 96 vertically arranged fractions.

Contact: simon.staubach@uk-essen.de; gerhard.weber@ffeservice.com; bernd.giebel@uk-essen.de

Development of a MSC EV separation protocol

Beside an applied current, Free-flow PH electrophoresis separates analytes, by 14.0 13.0 their isoelectric points at different pH. 12.0 Here, we developed and optimized 11.0 the buffer recipes according to the presented pH's. The buffers were applied side by side to the FFE separation chamber. The entire Free Flow Zone Electrophoresis (FF-ZE) protocol was developed for the 3.0 purification and isolation of MSC-EVs ^{2.0} from conditioned media that contained human platelet lysate as a supplement of 10%.

Experimental procedure

Conditioned MSC media were harvested of six independent cell cultures to obtain samples for six biological replicates. The samples of the conditioned media were separated in three independent runs. Three technical replicates were performed of the whole set of six.

- Samples
- \rightarrow Conditioned MSC medium produced independently on different days
- \rightarrow 6 biological replicates

Protocols evaluated by FFE separation of conditioned media were partially transferred and improved to separate EVs derived from human plasma samples. First attempts indicate enrichment of CD9⁺ EVs, but distributed to some fractions. To unravel the heterogeneity of plasma EVs, certain fractions were pooled, washed, and volume reduced by 100 kD Ultrafiltration for further proteomic analysis.

EV analysis according to the MISEV criteria

As a proof of principle we aim to get evidence that we indeed purified EVs that fulfill the requirements for the MISEV criteria. Therefor we further analyzed the EV enriched fractions. We chose the four fraction containing most of our vesicles for further analysis by image stream flow cytometry (ISX) Nanoparticle Tracking Analysis (NTA), for Western Blot (WB) and the most vesicle enriched fraction for proteomics (MS) and Transmission Electron Microscopy (TEM).

⁴Institute for Chemistry, University Hospital Mannheim, Mannheim, Germany

presented in an overlay. The similarity demonstrates the reproducibility of the method.

G. Weber, is CEO of FFE Service GmbH, the manufacturer of the FFE instrument